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Abstract. Recent evidence suggests that SUMOylation of proteins plays
a key regulatory role in the assembly and dis-assembly of nuclear sub-
compartments, and may repress transcription by modifying chromatin.
Determining whether a protein contains a SUMOylation site or not thus
provides essential clues about a substrate’s intra-nuclear spatial associa-
tion and function.
Previous SUMOylation predictors are largely based on a degenerate and
functionally unreliable consensus motif description, not rendering satis-
factory accuracy to confidently map the extent of this essential class of
regulatory modifications. This paper embarks on an exploration of pre-
dictive dependencies among SUMOylation site amino acids, non-local
and structural properties (including secondary structure, solvent acces-
sibility and evolutionary profiles).
An extensive examination of two main machine learning paradigms,
Support-Vector-Machine and Bidirectional Recurrent Neural Networks,
demonstrates that (1) with careful attention to generalization issues both
methods achieve comparable performance and, that (2) local features en-
able best generalization, with structural features having little to no im-
pact. The predictive model for SUMOylation sites based on the primary
protein sequence achieves an area under the ROC of 0.92 using 5-fold
cross-validation, and 96% accuracy on an independent hold-out test set.
However, similar to other predictors, the new predictor is unable to gen-
eralize beyond the simple consensus motif.

1 Introduction

SUMOylation is a post-translational modification attaching a small ubiquitin-
like modifier (SUMO) covalently to a target protein. It has been shown that
SUMO plays an important role in many essential biological functions, such as
preserving the integrity and function of intra-nuclear compartments, chromatin
organization and ultimately gene regulation [14, 9]. By modifying histones, dy-
namically competing with acetylation and ubiquitylation, SUMOylation appears
to play a pivotal role in repressing transcription. Dysfunction of the SUMOy-
lation pathway is related to several neurodegenerative diseases in human, such
as Huntington’s disease [5]. The significance of the SUMO conjugation system
is further underscored by the apparent conservation through evolution among
eukaryotic organisms.
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Fig. 1. SUMOylation pathway.
The figure shows the role of the in-
volved proteins in the SUMOyla-
tion pathway. E1 activates SUMO
in an ATP requiring process. E2
attaches SUMO to the Lysine
in the target protein, supported
by E3. SUMO-protease removes
SUMO from the protein, now free
to be re-used in another cycle.

The SUMOylation pathway comprises four proteins: E1 activating enzyme,
E2 conjugating enzyme, E3 ligase and SUMO-protease (illustrated in Fig. 1).
E1 prepares SUMO for binding to the target protein (the substrate). E2 and E3
interact directly (in a concerted fashion) with the substrate at the SUMOylation
site, usually conforming to the consensus motif, ΨKxE (where Ψ is a large hy-
drophobic residue, K is Lysine and E is Glutamic acid). E2 and E3 mediate the
binding between SUMO and the central Lysine [11]. Finally, the SUMO-protease
disassociates SUMO from the target protein.

Unfortunately, the motif is an unreliable predictor. Some substrates are mod-
ified on sites not matching the consensus motif [8]. Furthermore, not every con-
sensus site in a protein is modified by SUMO. It has been suggested that there
are additional factors, such as the appropriate presentation of the substrate se-
quence and protein sub-cellular location, which determine whether modification
is completed [8].

To date, three specialized SUMOylation site predictors have been published.
SUMOplot1 is commercial. SUMOsp [17] combines two algorithms originally
designed for phosphorylation site prediction (the scoring-based function GPS [19]
and an iterative statistical approach MotifX [13]). SUMOpre [16] is based on a
probabilistic method that optimizes the entropy of the motif.

An immediate application for in silico prediction is to determine the putative
SUMOylation sites in the four core histones of S. cerevisiae. Nathan et al. [10]
demonstrated that H2A, H2B, H3 and H4 are frequently SUMOylated. However,
Nathan and colleagues were only able to experimentally identify the exact loca-
tion of a fraction of the expected sites. The SUMOylation sites of the histones do
not conform to the consensus motif. SUMOpre and SUMOsp both fail to predict
a single SUMOylation site in protein sequences of the four histones. This ex-
emplifies the need for a SUMOylation site predictor that captures dependencies
beyond the consensus motif.

It is understood that SUMOylation site recognition by E2 and E3 depends
mainly on the amino acid composition in the immediate neighbourhood of the
central Lysine. However, it is unclear (1) if there are relevant dependencies be-

1 http://www.abgent.com/doc/sumoplot



III

tween central residues and surrounding residues not captured by simpler models,
(2) if the site’s structural presentation influences binding and the computational
recognition of it, and (3) if sequence conservation can be used to improve the
recognition of functional sites. In this study, we investigate the ability of two
machine learning techniques in predicting SUMOylation sites. Support-Vector-
Machine (SVM) [15] and Bidirectional Recurrent Neural Networks (BRNN) [2]
have both been successful in incorporating a range of dependencies into biolog-
ical sequence models. To evaluate the contribution of dependencies putatively
relevant to SUMOylation, we explore a range of features and functions for pre-
senting our data to these machine learning algorithms.

SVMs use kernels to map samples into a high dimensional feature space
to find the best separating decision hyperplane between the two classes (by
maximizing the margin between them). In this study we investigate standard
vector-based kernels as well as sequence-adapted kernels, including the string
P-kernel [7] and the local alignment kernel [12], all acting on a fixed sequence-
window around Lysine residues.

In the BRNN, the sequence input is instead fed iteratively into a network
of interconnected nodes with feedback connections incorporating a trace of past
sequence inputs. A BRNN is thus capable of accounting for sequence information
beyond that of a current input (here coming from both a downstream and an
upstream direction). The BRNN uses a gradient-based learning algorithm [2],
which involves updating network “weights” to minimize the difference between
predicted and target values.

We investigate the usefulness of secondary structure (SS) and solvent acces-
sibility (SolvAcc) for SUMOylation site recognition. Unfortunately, experimen-
tally resolved structures are available for only a fraction of known SUMOylated
proteins, hence both SS and SolvAcc are obtained from predictors. We use the
continuum secondary structure predictor, CSSP (with a reported Q3 = 77%) [3]
and the solvent accessibility predictor, ASAP (with a correlation coefficient of
0.69) [18].

The present paper is organized as follows. First, we give an overview of the
SUMOylation sites and analyse their distribution in our dataset. Second, we in-
vestigate the abilities of the different machine learning approaches when applied
directly on the primary data and then with additional features. In the last sec-
tion, we compare the best model with previous predictors, SUMOplot, SUMOsp
and SUMOpre.

2 Methods

2.1 Dataset

This study uses the dataset of Xu et al. [16] only containing proteins with at
least one SUMOylation site. Using the same strategy as Xu et al. for dividing
the data results in 144 proteins used for training and testing, and 14 proteins
set aside for final validation.
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The 144 proteins contain a total of 241 validated SUMOylation sites, which
collectively form the positive class. Roughly 68% of the SUMOylation sites con-
tain the consensus motif. The set of 5,741 Lysines which are not modified by
SUMO form the negative class. The 13 proteins in the hold-out set contain 27
sites of which 48% match the consensus. Noteworthy, the resulting dataset is
strongly unbalanced and could bias the method to prioritize the larger (nega-
tive) class. Steps are taken to investigate any effects of this imbalance.

Redundancy reduction of sequence similarity is not performed. Standard re-
dundancy reduction targets the overall sequence similarity within a dataset and
does not reduce the similarity of the relatively short SUMOylation sites.

When a numerical encoding is required (e.g. when using vector-based ker-
nels), each amino acid in the sequence is represented by a one-hot bit vector
(“plain”) or the position-specific score profile produced by psi-Blast [1] for the
protein (“profile”). The “plain” encoding is neutral in that no similarities are in-
corporated a priori. The “profile” encoding reflects the evolutionary divergence
between homologous proteins, making available information about sequence con-
servation. Such “profiles” have found great utility for predicting structural fea-
tures from sequence. In either case, the full sequence is represented by concate-
nating the position-specific vectors.

We apply CSSP (using default setting) to predict the secondary structure
from primary sequence. The secondary structure is represented by the probability
of a residue to adopt each of the three considered classes (helix, sheet, coil).
ASAP provides predicted residue-wise relative solvent accessibility (using default
settings). The predicted value is normalized to range between zero and one (with
one indicating a maximally exposed residue). In either case, each residue-wise
prediction is concatenated to the “plain” or “profile” encoding.

2.2 Cross-validation and Evaluation

We evaluate every predictor configuration using 5-fold cross validation, where
the dataset is randomly divided into five subsets. All but one of the five are used
for training with the remaining one used for testing. This routine is repeated
until all five subsets have been used for testing exactly once. In most cases, each
evaluation is then repeated five times, with averages and standard deviations
reported. To evaluate the performance we compare the predictions with the
known positives and report on the correlation coefficient (CC), the sensitivity
(SN), specificity (SP), and, the area under the ROC (AUC) (see e.g. [6] for
standard definitions). Only the AUC is not influenced by the arbitrary setting of
a specific classification threshold and we thus use this as the primary measure.
The large number of negatives makes it easy to reach high specificity by simply
predicting all but a few certain as negatives. We do revert to CC, SN and SP to
discuss specific issues and to compare with previous results.

Finally, trying a large number of configurations and selecting parameter val-
ues on basis of test results will impart some selection bias. We therefore report
and rely on results for the hold-out set, which has not influenced any predictor
settings.
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2.3 BRNN

A BRNN first centered on a particular position in a sequence (in our case this
is always a Lysine). Then, in an iterated fashion it processes wn residues on the
N-terminal side and wc residues on the C-terminal side, from both flanks and
working towards the centre (in steps of wn and wc residues, respectively). The
hidden nodes in this network are divided into two “wheels”, serving as feedback
modules in the N-terminal and C-terminal direction, respectively. Each wheel is
equipped with a specified number of nodes, effectively controlling the trace of
input from the flanks. The influence decays with the distance to the centered
Lysine.

Tuning the internal weights of the BRNN is an iterative process, requiring
many passes through the training set. With an independent test set left for the
final evaluation, we monitor the performance on the cross-validation test set of
each fold and stop training when the performance starts to deteriorate.

The unbalanced dataset could potentially also compromise performance. In
addition to the original training set we create a balanced set by sampling positive
and negative training data with equal probability. However, during testing all
positives and negatives from the test set in the particular fold are evaluated.

2.4 SVM and Kernels

To train the SVM we extract a sequence window covering wn residues towards
the N-terminus of the protein and wc residues to the C-terminus surrounding
every Lysine in the dataset. To account for the imbalance of the dataset, we
evaluate the influence of class-specific soft margin parameters, C+ and C−, for
positives and negatives, respectively.

Apart from window size and C-values, the performance also depends on the
choice of the kernel. Here, we evaluate five different kernels, the three standard
kernels: linear, radial basis function (RBF) and polynomial kernel, all requiring
numerical input (“plain” or “profile” encoding) and two sequence based kernels
which operate directly on the sequence data in the window.

Haussler proposed a string kernel known as the string P-kernel that prob-
abilistically evaluates (by convolution) the similarity between sequences by ex-
ploring their alignment with all ancestral sequences [7]. Since we are only dealing
with fixed-length (N = wn+1+wc) amino acid sequences without gaps, the string
P-kernel is computed as KP (x,y) =

∏N
i=1

∑
α∈A P (α)P (xi|α)P (yi|α) where A

is the amino acid alphabet and x and y are the two amino acid patterns being
evaluated. The prior and conditional probabilities of amino acids are taken from
the data used to create the BLOSUM62 substitution matrix.

In contrast, the local alignment kernel compares two sequences by explor-
ing all their alignments including those with gaps [12]. An alignment between
the two sequences is quantified using an amino acid substitution matrix (here
BLOSUM62) and a gap penalty setting (we use the default setting). The contri-
bution of non-optimal alignments to the final score is controlled (we use β = 0.1
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Fig. 2. Comparison between the sequence Logos of SUMOylated and non-
SUMOylated sites as well as site distribution in the dataset. Panel a shows
the sequence Logo created from 165 SUMOylated sites containing the consensus motif
(positive class). Panel b shows the Logo of 88 non-SUMOylated sites which contain
the consensus motif. Panel c shows the Logo of the remaining 76 non-consensus sites
of the positive class. Panel d shows a pie diagram of the SUMOylation distribution in
the dataset.

which implies that many local alignments influence the result). All kernels are
normalized.

3 Results

3.1 Dataset Analysis

This section illustrates the discrepancy between the dominant consensus motif
and alternative SUMOylation sites.

165 out of the 241 sites in the training set have the consensus motif of
ΨKxE. The motif seems to be direction dependent, reading in direction of the
C-terminus. However, there are four validated SUMOylation sites which show
the reverse motif. As shown in Tab. 4 a simple regular expression parser for
the consensus motif can achieve a CC of 0.68 – exceeding the 0.64 reported for
SUMOpre – by identifying the 165 SUMOylated sites containing the consensus
motif and missing 76. However, it wrongly predicts 88 sites to be SUMOylated. It
should be noted that on a proteomic scale the dataset contains an unrealistically
high proportion of SUMOylation sites so the estimates are optimistic.

The difficulty of discriminating between SUMOylated and non-SUMOylated
sites on basis of the consensus is illustrated in Fig. 2a-b using sequence Logos
of both positives and negatives that match the motif [4]. A Logo of the known
SUMOylation sites not matching the consensus motif is shown in Fig. 2c. The
central Lysine is still predominantly flanked by Glutamic acid (E) on the C-
terminal side, however the N-terminal hydrophobic residue is missing.

Fig. 2d shows the distribution of consensus vs non-consensus SUMOylation
sites in the dataset of 144 proteins. 56% of the proteins have a single SUMOy-
lation site only of which two thirds are consensus sites. A similar ratio can be
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Dataset hidden AUC
nodes (sd)

unbalanced 2 0.923 (0.006)
unbalanced 10 0.919 (0.004)
unbalanced 20 0.914 (0.007)
balanced 2 0.895 (0.012)
balanced 10 0.906 (0.007)
balanced 20 0.906 (0.010)

Table 1. Overview of the performance of ex-
amined BRNN settings. Average area under the
ROC (AUC) of different benchmark settings for
BRNN (five times repeated).

observed for proteins, which contain more than one SUMOylation site. Only 12
proteins contain consensus as well as non-consensus sites. This indicates that
there is no cascade effect, where the “strong” consensus site is SUMOylated first
and then aids in the SUMOylation of “weaker” non-consensus sites.

3.2 Performance of BRNN

The optimal parameter setting of the BRNN was determined empirically. The
window size of wn = 1 and wc = 3 has the highest AUC. Smaller windows give
worse accuracy while larger windows do not bring any improvements. Tab. 1
summarizes the performance of several settings of hidden nodes, and on balanced
and unbalanced presentation of data.

The performance is rather even across all settings. The BRNN performs
slightly better when trained on the unmodified, unbalanced dataset. Increasing
the number of hidden nodes appears to only decrease accuracy – suggesting that
the site is simple to represent. The simplest topology with one hidden node in
each wheel, trained without compensating for the class imbalance provides the
best result with an average AUC of 0.93 (henceforth referred to as BRNNBest).
The BRNNBest model contains 125 parameters to be optimized during training
on approx. 4,800 samples. We do not observe a trend to overfit, which indicates
a sufficient amount of training samples.

3.3 Performance of SVMs

In this section the performance of several SVM-settings are evaluated. Kernel,
C-values and window size are problem specific and thus determined empirically.
Fig. 3 exemplifies the influence of the choice of window size, as well as C-values
for the linear, RBF and string P-kernel respectively. The optimal window sizes
agree with the information content visualized in the Logos (Fig. 2): while there
seems to be some conservation towards the C-terminus the performance drops
when more than three residues are included towards the N-terminus. The best
C-values for the linear kernel put equal weight for the negative and positive
classes. For the RBF and the string P-kernel there seems to be specific C-value
pairs, which perform better than others.

Tab. 2 summarizes the performance of the best setting for each kernel in
terms of C-values, window sizes and kernel specific parameters.
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Fig. 3. Performance of different SVM settings. Each panel exemplifies the AUC
on the test set for different configurations with varying window sizes (upper panels)
and C-values (lower panels) for the linear, RBF and P-kernel respectively.

Once the optimal parameter setting is determined, all kernels seem to be
able to recognize SUMOylation sites quite accurately, since the average AUC is
around 0.92 (with no statistical significant difference using t-test p-value < 0.05).
The RBF and string P-kernel achieve the highest average AUC (both at 0.923)
and have the same predictive power as the BRNN, albeit with a smaller standard
deviation.

We choose the SVM with RBF kernel (wc = 6, wn = 4, C+ = 2, C− = 1) as
our final predictor. Though not statistical significantly better its performance
is more robust than the BRNN approach. Compared to the string P-kernel the
RBF-kernel is much faster to train and test. We refer to the SVM-RBF kernel
as SUMOsvm.

3.4 Assessing Enhanced Input Data and Multi-SVM Architecture

In this section we evaluate the impact of incorporating structural features and
evolutionary information into the predictor, as well as combining several kernels
into one “committee”-like SVM.

The results from the extended input features are summarized in Tab. 3.
We observe no performance increase when incorporating secondary structure or
solvent accessibility. The small increase using psi-Blast profiles is not statistically
significant.

A multi-SVM committee yields no observable performance increase. An im-
provement in performance due to a committee-style prediction is expected only
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ML method AUC parameter settings
(sd) wc wn C+ C− method specific

RBF kernel 0.923 (0.001) 6 4 2 1 σ = 0.014
String P-kernel 0.923 (0.004) 6 4 8 1 γ = 0.1, BLOSUM62
BRNNBest 0.923 (0.006) 3 1 hidden nodes=2
Linear kernel 0.920 (0.004) 6 1 2 2
Polynomial kernel 0.920 (0.004) 12 1 4 1 order = 3
Local alignment kernel 0.913 (0.002) 3 2 1 1 β = 0.1, BLOSUM62

Table 2. Overview of the performance of the examined machine learning
methods. The methods are ordered according to the average AUC, achieved by the
different kernels and BRNNBest. Each SVM and BRNN is represented by its best
performing parameter setting regarding test error, 5-fold CV, five times repeated.
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Plain 0.92
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SS 0.92
SolvAcc 0.92
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(a) ROC of SUMOsvm (b) Enriched encoding
Table 3. Influence of evolutionary and structural features on the perfor-
mance of SUMOsvm. Panel a: average ROC for SUMOsvm using plain encod-
ing (five times repeated). Panel b: Performance of SUMOsvm with additional fea-
tures input. The structural features are secondary structure (SS), solvent accessibility
(SolvAcc) or both. Evolutionary features are psi-Blast profiles.

when the kernels deliver qualitatively different predictions. This is not the case
here as we observe at least 90% of the false predictions are shared amongst the
majority of all kernels.

3.5 Comparison and Discussion

In this section we compare SUMOsvm with the previously reported SUMOyla-
tion site predictors. In Tab. 4, we show the testing error measured on the 144
proteins during cross-validation and the prediction error on the 14 proteins in
the hold-out set. To obtain the hold-out error, we perform a voted prediction of
the SVMs trained during the 5-fold cross-validation. The performance measures
from the other methods are obtained from the original publications.

The comparison with other methods for predicting SUMOylation sites is
complicated by the use of different validation methods. For SUMOpre, only three
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Method Validation AUC CC SN SP AC

SUMOsvm CV 0.92 0.67 0.62 0.99 0.97
hold-out - 0.56 0.44 0.99 0.96

RegularExp training NA 0.68 0.69 0.99 0.98
hold-out - 0.54 0.48 0.99 0.97

SUMOpre CV* 0.87 0.64 0.74 0.98 0.97
hold-out* - 0.66 0.54 1.0 0.97

SUMOsp CV 0.73 0.26 0.83 0.93 0.93
hold-out - 0.37 0.61 0.93 0.91

SUMOplot training NA 0.48 0.80 0.93 0.90
hold-out - 0.35 0.57 0.93 0.91

Table 4. Performance overview of the existing predictors and SUMOsvm.
The values for the area under the ROC (AUC), correlation coefficient (CC), sensitivity
(SN), specificity (SP) and accuracy (AC) are obtained from the original publications of
SUMOpre and SUMOsp. The threshold chosen for SUMOsp was 18. *Though reported
by Xu et al. as CV and hold-out error, the values are understand to be training error
because “self-consistency test was used as the testing strategy” [16].

different test protocols are used: self-consistency (where “the SUMOylation state
for each motif in the entire dataset is predicted by the rules derived from the
same dataset” [16]), K-fold cross-validation and Leave-one-out cross-validation
(which is identical to K-fold CV when K equals the size of the dataset minus
one). The hold-out set is inspected only in the context of these protocols (all of
which involve training on this set).

The AUC is not explicitly reported for SUMOpre, but here estimated from
their ROC curve. Sensitivity and specificity are altered by simply changing the
classification threshold. The threshold setting similarly affects the correlation
between observed and predicted sites. We thus assume that all reported results
are achieved when the threshold is the best possible.

SUMOsvm is not significantly better than the previously published methods,
which in turn are not more powerful than a simple regular expression scan with
[LVI]K.E. Neither the motif-flanking residues nor structural features appear to
aid prediction. This begs the question how non-consensus sites are processed by
SUMO.

One hypothesis is that sites are SUMOylated by different means (correspond-
ing to different SUMOylation pathways). We would then expect that SUMOy-
lation sites of proteins group in accordance with shared means. To identify such
groups, we performed a kernel hierarchical cluster analysis, where the distances
in the feature space (as seen by the RBF kernel) are used to generate a distance
map between the different sites. The resulting map of the SUMOylation sites in
the hold-out set is shown in Fig. 3.5. The correctly predicted sites (all conform
to the consensus motif) are clustered and form the largest entity. There is only
one other cluster formed containing a putative KxK motif in the hold-out set.

To investigate if SUMOylation binding is species or compartment dependent,
we extracted all proteins in the dataset that belong to human and are localized
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Fig. 4. Hierarchical clustering
of the SUMOylation sites in
the hold-out set. We use the
RBF-kernel with wc = wn = 3
to obtain the hierarchical cluster-
ing plot. Sites SUMOsvm predicts
correctly are marked with *.

to the nucleus. If the SUMOylation pathway is species and/or compartment de-
pendent, one would expect to see a correlation of either with sequence motif.
However, a similar fraction of the consensus motif appears amongst human nu-
clear proteins as in the original set, and no alternative motifs were obvious when
Logos were used from this smaller group of binding sites. Also, no performance
gain could be observed when retraining on this subset.

4 Conclusion

We developed a SUMOylation site predictor, SUMOsvm, based on support vec-
tor classification and the RBF kernel. Several other configurations performed
equally well including models based on alternative kernels and the bidirectional
recurrent neural network. However, in the comparison to previously published
SUMOylation site predictors we found that neither SUMOsvm nor the previ-
ously published methods are significantly better than a simple regular expression
scanner.

The disappointing result is particularly noteworthy because we presented
SUMOsvm with sequence data which were enriched with predicted structural
features (secondary structure and relative solvent accessibility) and evolutionary
information (psi-Blast profiles).

No predictor to date is able to identify the SUMOylation sites in the four core
histones of yeast–a group of proteins which are known to be regulated by SUMO
but for which we still have only partial understanding of actual sites involved.
All predictors tend to rely on the consensus motif that describe a majority of
known SUMOylated sites but do not include the sites on the histones. Until
more of the SUMOylation pathway is uncovered, SUMOylation site prediction
from the current paucity of data remains challenging.
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