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Abstract— We present a machine learning model that predicts
a structural disruption score from a protein’s primary structure.
SCHEMA was introduced by Frances Arnold and colleagues
as a method for determining putative recombination sites of a
protein on the basis of the full (PDB) description of its structure.
The present method provides an alternative to SCHEMA that
is able to determine the same score from sequence data only.
Circumventing the need for resolving the full structure enables
the exploration of yet unresolved and even hypothetical sequences
for protein design efforts. Deriving the SCHEMA score from a
primary structure is achieved using a two step approach: first
predicting a secondary structure from the sequence and then
predicting the SCHEMA score from the predicted secondary
structure. The correlation coefficient for the prediction is 0.88
and indicates the feasibility of replacing SCHEMA with little
loss of precision.

I. I NTRODUCTION

This work examines the ability and accuracy of machine
learning approaches in predicting a structural disruption score
from amino acid sequence data alone. The SCHEMA-score
was introduced by Voigtet al. to quantify the structural
disruption caused by using a sequence position as a crossover
site in recombination-based protein design [1].

Recombination has proven to be very powerful in protein
design [2], [3], [4]. Unlike traditional protein design methods
where new proteins are built from scratch [5], recombination
deals with native sequence parts whose properties are already
known. Recombination principles systematically reduce the
combinatorial space of possible sequences to a practically
explorable area.

A pre-requisite for effective directed recombination is the
knowledge of possible recombination sites. The assumption
behind SCHEMA is that function is preserved by retaining
structural components. SCHEMA assists in dividing a protein
into segments that are likely to fold independently from
the rest of the protein. The segments form building blocks
sampled from a number of different parent proteins and can
be recombined with the main structural features left intact [1].

Essentially Voigtet al. estimate preserved function from
preserved contact between residues. Two residues are defined
to be in contact if they are within a predefined distance

(4.5 Å) of each other. SCHEMA calculates for each residue
the number of connections that break if the recombination is
set at this position. The minima of the calculated profile over
the sequence indicate possible recombination sites [1].

Importantly, the recombination sites identified by SCHEMA
favourably match successful recombination sites as established
by in vitro experiments [1]. Furthermore, protein design ex-
periments with SCHEMA guided recombination have led to
highly functional protein hybrids [1], [4].

The SCHEMA calculation, however, requires the full ter-
tiary description of the protein (as in the Protein Data Bank).
This requirement severely limits the number of candidate
proteins to the small group that are already resolved by X-
ray crystallography or NMR. Due to the expensive, time-
consuming and complicated nature of structure determination,
the number of proteins with known structure is likely to remain
small relative to the total number of known sequences.

Being able to freely choose candidate proteins on the basis
of functional properties (say, specific enzymatic activity), and
not be limited to those for which full structural information
is available, is highly desirable. Not until recombination site
prediction is disengaged from the tertiary structure, we can
fully tap the power ofin silico protein design.

The present work presents and evaluates an approach to
predict the SCHEMA score from the protein sequence. To
find the right means, two different but previously successfully
utilised machine learning techniques are surveyed: Neural
Networks and Support Vector Regression (SVR). The models
are trained on a large set of protein data to predict the structural
disruption score as determined by the original SCHEMA
algorithm. Each point in the sequence is processed by using
a window of sequence residues as input. We evaluate models
that are only presented with plain sequence data, models that
are presented with a predicted secondary structure, and models
that are presented with predicted residue contact numbers
combined with secondary structure.



II. M ATERIAL AND METHODS

A. Data set

We use a data set consisting of 945 proteins taken from the
Protein Data Bank. The data set represents a diverse range
of proteins and has no pairs with more than 25% sequence
similarity [6].

1) The target SCHEMA score:The SCHEMA score was
determined for the proteins in the data set using the equation
given by Voigtet al. [1].

Si =
i∑

j=i−w+1

j+w−2∑

k=j

j+w−1∑

l=k+1

cklPkl (1)

Si describes, for each residue, the number of contacts within
the window (i − w, i + w) that would be broken if the
recombination site is positioned ati. Contact is defined as
two residues within the spatial distance of 4.5Å.

The way the sums are nested creates an implicit weighting.
Contacts, where both residues are close toi, are weighted
the highest and the influence decreases if one or both contact
partners are located close to the boundary of the window.ckl =
1 if residuesk and l are in contact andckl = 0 otherwise.

For recombination site determination with two or more
parents, aiming to produce hybrid structures, the sequence
composition of all parents should be taken into consideration.
Hence,P = 0 if amino acids atk and l are identical in all
parents. In the tests presented hereinP has always the value of
1, since the SCHEMA score is calculated for a single protein.

The window size is set to 14 to follow the configuration
used by Voigtet al. The complete binary contact map was
derived for each of the proteins in the dataset by employing a
Euclidian cut-off distance of 4.5̊A. Additionally, the residues
themselves and immediate neighbours are defined to be in
contact.

For both SVR and Neural Networks, preliminary studies
showed that using the SCHEMA score directly as target led
to slightly worse results than a bounded version. Thus, we
report on models that use a zero-one bounded transformation:

S′ = tanh

(
S

n

)
(2)

wheren is a normalization constant
(
n = MAX(Si)

2 = 874
)
.

2) The input sequence data:The study evaluates three non-
exclusive means for presenting the 945-protein sequence data.

Theprimary structure(ps) is encoded numerically by using
so-called PSI-BLAST profiles. Profiles are generated by per-
forming an iterated PSI-BLAST search (three passes against
Genbank’s non-redundant protein data set). Each sequence is
broken down into separate positions. Each position is encoded
by a 20-element vector. Each element in the vector corresponds
to a specific amino acid and its value essentially reflects how
often the amino acid appears in this and (determined by PSI-
BLAST) very similar sequence positions. Profiles are generally
thought to reflect evolutionary information and have been

shown to be superior to other means of numerically encoding
amino acid information for structure-related prediction [7], [8].

The secondary structureof each residue – either three-
state (ss3) or eight-state (ss8) [9] – can be predicted from
the sequence data. We use the Continuum Secondary Structure
Predictor [10] which produces a probability for each secondary
structure state (both for three-state and eight-state). The sec-
ondary structure model is based on a recently proposed scheme
by Andersenet al. [11] to more accurately represent caps
on regular structures and structural ambivalence in flexible
structures. At an accuracy of 0.47, as measured by Kullback-
Leibler divergence from the 3-class distribution amongst NMR
models, cascaded probabilistic neural networks produce the
most accurate continuum secondary structure [10]. The clas-
sification accuracy achieved by thresholding this probabilistic
predictor is, atQ3 = 77.3, on par with standard categorical
secondary structure predictors.

We take the predicted probabilities of the continuum sec-
ondary structure as representing the residue when the sequence
is presented to the model. The secondary structure encoding
of a sequence position is thus considerably shorter (three or
eight values) than the profile encoding.

We also experiment with another structural feature – the
residuecontact number(co) – which describes the number
of contacts the residue has with other residues in the same
protein. The contact number is a single value for each residue.

The goal is to predict the SCHEMA score from the primary
structure directly, thus, theContact numbersused must as well
be predicted. Pollastriet al. report on a method that is able
to derive contact numbers. [12]. We used the SVR Contact
Number Predictor [13] which predicts the contact number for
each residue from the primary structure with an correlation
coefficient of 0.70. Contact numbers are normalized by the
following equation:

Co′ =
Co− 〈Co〉√
(Co− 〈Co〉)2 (3)

where〈·〉 is the mean.

B. Predictors

We evaluate two major types of machine learning algo-
rithms, namely Neural Networks and Support Vector Regres-
sion. The choice of techniques is supported by the general
observation that these two types of algorithms have repeatedly
been found superior for relevant prediction problems (e.g.
secondary structure prediction [7], [14], [10], contact num-
ber and solvent accessibility prediction [12], [13]). To make
the comparison straight forward we also configure models
in accordance with previous studies of predicting structural
features. The window size of all models is set to 15 residues:
the residue for which the SCHEMA score is predicted and
then 7+7 residues immediately upstream and downstream,
respectively. This configuration has been found to be close
to optimal for most contact number and secondary structure
predictors. Algorithm-specific parameter values are provided
in the following.



TABLE I

KERNEL

Linear k(x, y) = (x · y)

Gaussian RBF k(x, y) = exp
(−γ‖x−y‖d

c

)

Sigmoidal k(x, y) = tanh(γ · x · y + c)

1) Neural Networks:The Feed Forward Neural Network
(FFNN) is trained and evaluated on the data set. The number
of input nodes of the FFNN depends on the input encoding.
The network is standardly trained using gradient descent to
minimise the error as measured on the single output node. The
learning rate isη = 0.001. A variety of hidden node numbers
h (including not using a hidden layer at all) are trialled. A
sigmoidal output function is used.

Furthermore, a Bidirectional Recurrent Neural Network
(BRNN) is trained and evaluated on exactly the same data.
BRNNs have previously been found to be superior to FFNN
for both contact number and secondary structure prediction
[15], [16]. The basic configuration of the FFNN was again
used for the BRNN. However, the BRNN requires a modified
training procedure that works with the use of upstream and
downstream input “wheels” [17]. Wheels allow a much greater
number of residues to be part of the input, without introducing
a major increase in the number of weights to be adapted by
the training algorithm. The number of hidden nodes in each
of the wheels is set to seven in all tests.

For all neural networks, training data is presented in batches
of 100 windows before the weights are changed. A total of
40,000 sequences were presented in random order before we
stopped training. In preliminary studies this number was seen
as sufficient for convergence.

2) Support Vector Regression:Recent findings suggest
that Support Vector Regression (SVR) exceeds the accuracy
reached by many neural networks [18], [13]. Essentially,
support vector regression operates by finding so-called support
vectors that collectively represent the function in a feature
space. Support vector regression minimizes theε-tube which
is wrapped around the approximated function to cover most
of the data points. Importantly, a kernel function maps the
input sequence encoding into the feature space. We examine
optimisation usingε-SVR andν-SVR with the same protein
data set as used for the neural networks. The standard stopping
criterion is used andC = 0.5 (ensuring a medium balance be-
tween penalizing misclassifications and maximizing the size of
the decision margin). Three different standard kernel functions
are tested (Table I, withγ = 1, c = 1 andd = 3). We use the
LIBSVM implementation of the optimisation procedures [19].

C. Testing

Preliminary simulations with the used models showed that
the differences between 10-fold and 2-fold crossvalidation are
negligible (not shown). To minimize the computational time

required, we consistently use 2-fold crossvalidation to develop
and test models.

1) Performance Measure:Two performance measures are
employed. The first one is the correlation coefficientr between
the calculated SCHEMA scoreti and the predicted valuepi

where the indexi represents the position in the sequence.

r =
〈(ti − 〈ti〉) · (pi − 〈pi〉)〉√
〈(ti − 〈ti〉)〉 ·

√
〈(pi − 〈pi〉)〉

(4)

where〈·〉 is the mean. Ideal performance means thatti andpi

are perfectly and positively correlatedr = 1.
The second measureDevA is the Root Mean Square Error

(RMSE) normalized by the standard deviation of the target.

DevA =

√
〈(pi − ti)2〉√
〈(ti − 〈ti〉)2〉

(5)

Ideal performance means thatti and pi are identical hence
DevA = 0.

Both measures are defined for a single protein chain. All
reported result values are averages over all chains (when they
appear as test cases).

III. R ESULTS

A. The primary structure as input

The initial set of simulations show that machine learning
algorithms are unable to predict the SCHEMA score directly
from the primary structure (see Table II and Table III).

B. The secondary structure as input

The results when secondary structure is used as input for
the two neural network architectures are shown in Table II
and Table III. The results when secondary structure is used as
input for the support vector regression algorithm are shown in
Table IV and Table V.

Notable is that a single-layer neural network performs
surprisingly well on the ss3-input data withr = 0.86 and,
for ss8, even better than a multi-layer neural network with 20
or 40 hidden units. As expected, the BRNN outperforms the
FFNN with r = 0.88 on the ss3 data (and slightly worse for
the ss8 data). The predicted outputs of the BRNN for three
sequences are shown in Figure 1.

TABLE II

THE PERFORMANCE OFFFNN (USING 2-FOLD CROSSVALIDATION, A

SECONDARY STRUCTURE15-RESIDUE INPUT WINDOW, AND TRAINING

FOR 40,000SEQUENCES).

FFNN
Inputset h r devA
ps 0 0.56 0.95

20 0.56 0.95
40 0.56 0.95

ss3 0 0.86 0.57
20 0.86 0.57
40 0.86 0.57

ss8 0 0.86 0.56
20 0.85 0.69
40 0.85 0.58



TABLE III

THE PERFORMANCE OFBRNN (USING 2-FOLD CROSSVALIDATION, A

SECONDARY STRUCTURE7+1+7RESIDUE INPUT WINDOW, AND TRAINING

FOR 40,000SEQUENCES).

BRNN
Inputset h r devA
ps 7+7 0.66 0.90
ss3 7+7 0.88 0.52
ss8 7+7 0.87 0.55

TABLE IV

THE PERFORMANCE OFε-SVR (USING 2-FOLD CROSSVALIDATION AND

SECONDARY STRUCTURE AS INPUT).

ε-SVR
Inputset kernel r devA
ss3 linear 0.82 0.63

hbf 0.80 0.65
sigm 0.07 1669.8

ss8 linear 0.85 0.60
hbf 0.83 0.64

Neither SVR optimization algorithm performs better than
the bi-directional neural network.ν-SVR reachesr = 0.85 on
ss3 andr = 0.87 on ss8 both with the simple linear kernel.

The tests suggest that neural networks are usually better
than SVR at predicting of the SCHEMA score. However, the
low number of tests and the small differences prohibit us from
making any general claims regarding how the algorithms com-
pare. Increasing the performance of SVR could be a matter of
choosing a more suitable kernel. The good performance of the
linear single-layer neural network and the linear kernel SVR
indicates a linear correlation between the structural features
and the SCHEMA score. The better performance of BRNNs
over FFNNs indicates that there are useful dependencies in the
data beyond the window size of 15 residues. The SCHEMA
equation itself is window-based and takes therefore only local
interactions into account. These local interactions, however,
are influenced by the global structure of the protein and
therefore by long term dependencies.

C. The contact number as input

The reported results suggest that there is a direct relation
between some structural features and the SCHEMA score.
Hence, adding another structural feature to the input may
assist further in improving the prediction accuracy. To test this
hypothesis the contact number for each residue in the data set
was predicted and used as an additional input feature for the
SCHEMA score predictor.

As shown in Table VI, Table VII and Table VIII, the
additional information seems to make no contribution to the
prediction accuracy in neither of the models. The lack of
improvement is not explained by a possible inaccuracy of
the contact number predictor. We carried out several tests
with the FFNN trained on secondary structure and contact
number as determined directly from the contact map derived
from the PDB descriptions. The difference in using this
observed contact number and the predicted contact number

TABLE V

THE PERFORMANCE OFν-SVR (USING 2-FOLD CROSSVALIDATION AND

SECONDARY STRUCTURE AS INPUT).

ν-SVR
Inputset kernel r devA
ss3 hbf 0.83 0.62
ss8 linear 0.84 0.60

hbf 0.85 0.58

TABLE VI

THE PERFORMANCE OFFFNN USING THE SECONDARY STRUCTURE AND

PREDICTED/OBSERVED CONTACT NUMBER AS INPUT(2-FOLD

CROSSVALIDATION, A 15-RESIDUE INPUT WINDOW, AND TRAINED FOR

40,000SEQUENCES).

FFNN
Inputset h predicted CO observed CO

r devA r devA
ss3 co 0 0.86 0.57 0.86 0.57

20 0.86 0.57 0.85 0.57
40 0.86 0.57 0.86 0.57

ss8 co 0 0.86 0.57 0.86 0.56
20 0.85 0.59 0.85 0.59
40 0.85 0.59 0.85 0.60

is negligible (Table VI), which supports the conclusion that
contact numbers are not aiding in improving the accuracy
beyond the contribution of the secondary structure.

Contact numbers can be divided into local connections and
global connections. Secondary structure essentially covers the
information content of local connections. Since the SCHEMA
score is calculated using a window we suggest that the
additional information about global connections is not aiding
since the SCHEMA score does not take these connections into
consideration.

The impact of using alternative structural features, e.g.
predicted solvent accessibility, remains to be investigated.

TABLE VII

THE PERFORMANCE OFBRNN USING THE SECONDARY STRUCTURE AND

PREDICTED CONTACT NUMBER AS INPUT(2-FOLD CROSSVALIDATION, A

7+1+7RESIDUE INPUT WINDOW, AND TRAINED FOR 40,000SEQUENCES).

BRNN
Inputset h r devA
ss3 co 15 0.88 0.52
ss8 co 15 0.87 0.58

TABLE VIII

THE PERFORMANCE OFε-SVR USING THE SECONDARY STRUCTURE AND

PREDICTED CONTACT NUMBER AS INPUT(2-FOLD CROSSVALIDATION AND

SECONDARY STRUCTURE WITH CONTACT NUMBERS AS INPUT).

ε-SVR
Inputset kernel r devA
ss3 co linear 0.82 0.63

hbf 0.80 0.66
ss8 co linear 0.85 0.60

hbf 0.71 0.84
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Fig. 1. Examples of predictions produced by the BRNN with ss3 input (h = 7 + 7, w = 15, r = 0.88). The solid line represents the actual SCHEMA
score and the dashed line represents the predicted score.

D. Evaluation of the predicted minima

The most valuable information within the SCHEMA score
are according to Voigtet al. the minima. It is therefore not
imperative to approximate the target functionT exactly as
long as the minima are the same. The distance between the
positions of the minima in the predicted functionP and in
the target function, holds therefore more information about the
suitability of our method for protein design than the correlation
coefficient of the whole function.

The minima in the function are identified by a simple
algorithm that detects a slope-change. Before applying this
algorithm the function is smoothed with a linear kernel: the
mean of the values within a window. The window size for
the target function isw = 3. For the predicted function the
window size is iteratively increased to avoid a number of
minima in P that exceeds the number of minima inT by
a factor of 3.

Deriving the distance is not trivial, because the number of
minima differs between the predicted and the target function.
For each minimum in the target function a corresponding
minimum in the predicted function has to be identified. This

problem can be seen as an optimization task where the corre-
sponding minima in the predicted function has to be chosen
in a way that the overall distance is minimized. We choose
a dynamic programming approach to solve this optimization-
problem.

Ci,j = Min





Ci−1,j−1 + abs(Pj − Ti), if 〈Ti, Pj〉;
Ci,j−1 + 10, if 〈−, Pj〉;
Ci−1,j + 10, if 〈Ti,−〉.

(6)
where〈·, ·〉 indicates an alignment. The gap-penalty of 10 has
proven to be a good measure for the data set.

The closer evaluation of the best model (BRNN) delivers the
following results: The average distance between the position
of the predicted and the target minima are 3.42 residues. A
scatter plot of the position of minimami in the predicted score
against the position in the target function for all minimaM
in the data set is shown in in Figure 2.

IV. CONCLUSION

The goal was to develop a machine learning approach that is
able to predict the SCHEMA score – a very successful heuris-
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Fig. 2. A scatter plot of the position of minimami in the predicted score against the position in the target function for all minimaM in the data set. Ideally,
the plot forms a perfect diagonal.

tic in the exploration of protein design. Prediction from the
primary structure enables anin silico study of all proteins and
not only the ones where the complete structural information
is already known.

To the best of our knowledge, the presented model repre-
sents the first predictor of a structural disruption score and
should be of considerable benefit for protein design efforts.
The prime model is a cascaded model that produces an
accurate SCHEMA score (r = 0.88) from the sequence data
alone.

Models trained directly on the primary structure of the
proteins have severe difficulties in finding a reasonable gener-
alisation. Predicting from secondary structure, however, leads
to successful results. It seems that when additional structural
features like secondary structure and contact number are used
the SCHEMA score can successfully be predicted. Fortunately,
such features are themselves predictable from the primary
structure. We show how a secondary structure predictor is used
to provide input data for the SCHEMA score predictor. The
best predictor in this study is the bidirectional recurrent neural
network.
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